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Quantum instability of the flux lines in the coherent state representation
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Instability as the exponential divergence of initially neighboring flux lines of the coherent state representa-
tion of quantum mechanics is shown to reduce in the classical limit to the standard definition of classical
instability. The equations for the coherent state flux lines are derived and the proposed definition for quantum
instability is shown to be of practical utility by numerical analysis of the double well potential under a
monochromatic external driving force. Regular and chaotic flux lines are found in accordance with the classical
trajectories[S1063-651X97)10702-4

PACS numbe(s): 05.45+b, 03.65-w

[. INTRODUCTION that Bohmian trajectories separate linearly or exponentially
for a typical nonintegrable system depending on the initial
Conceptual and practical problems in quantum theoryconditions in accordance with the classical solution.
have often been related to finding the quantum counterpart of In this paper we use a causal dynamics recently proposed
a classical phase space trajectory. The interpretation of quaky one of us as a new interpretation of quantum theory
tum theory, the tunneling times through a potential barrier/ 16,17 that offers a physical insight different from Bohmian
and quantum chaos studies have largely been related to thr.@echanlc_s. For a given wave function, in Bo_hmlan m_e_chan-
problem. Decoherent historidd], Nelson stochastic paths iCs there is one possible momentum for a given position at
[2], and Bohmian trajectoriei3] play an important role in timet. In the dynamics we consider here all initial momenta
the interpretational problem of quantum theory. Feynmarfre available with different probabilities and in the classical
paths and Bohmian and Wigner trajectories are some of thémit the probability is peaked on the classically available
important proposals to the tunneling time problef. The  momenta. The difference is more striking in the case of sta-
quantum chaos problem, that is, finding the quantum countionary states of bound systems for which Bohmian mechan-
terpart of classically chaotic motion, has been largely influ-ICs describes the particle as standing still whereas in our case
enced by Feynman paths and semiclassical thefiésand the particle moves and with classical mechanics as a limit.
have made important contributions in atomic and moleculad herefore, in our dynamics there can be chaotic motion in
physics[6]. the stationary states as well as in nonstationary wave func-
The most important advances in the study of quantuntions. The causal dynamics we propose to consider are math-
counterparts of classical chaos have been related to findirgmatically described by the flux lines of the coherent state
the quantum properties of classically chaotic systégumn- ~ representation of quantum mechanics, which we argue must
tum chaology studief7]). Concerning the problem of find- reduce to phase space classical trajectories in the classical
ing the quantum counterpart of classical chaos, the standaftiit (which are the flux lines of the Liouville equatipn
answer is that it does not exist in relation to the Sdimger ~ Thus by defining quantum instability as the exponential
equation and that it may take place in the measurement pr&eparation of flux lines in the coherent state representation of
cess as the measurement apparatus is a classical object &i#gntum mechanics, we recover the standard definition of
due to the collapse procef8]. Some have looked for new classical instability in the classical limit. Equations for the
definitions in classical mechanics that could be carried ovefelevant flux lines in the coherent state representation of
to quantum mechanics. In this respect information theory an@uantum mechanics are given in Sec. Il, where it is argued
algorithmic entropy have played a prominent ro@&-11]. that the classical limit of the flux lines for the appropriate
Other proposals have retained the standard definition of clagnsemble are the phase space classical trajectories. In Sec. Il
sical instability as the exponential divergence of initially We propose to define quantum instability as the exponential
neighboring trajectories in phase space and have sought féeparation of flux lines in the coherent state representation of
its quantum counterpart. Mendgk2] proposed deformations quantum mechanics. This definition of quantum instability
outside Hilbert space and Kanno and Ishjda] considered reduces to the standard definition of classical instability in
the separation of Feynman paths. However, what is clearl§jhe classical limit. In Sec. IV we show the utility of this
needed is to treat the problem as a particular problem of thelefinition of quantum instability by numerically obtaining
foundations of quantum theory. Along this line uGold-  the coherent state flux lines for a double well potential under
stein, and ZangHil4] have argued that quantum chaos arises mo'nochromanc gxternal dr|V|'ng force. Regu!ar and chaotic
naturally in Bohmian mechanics. One of 5] has found ~ flux lines are studied. Conclusions are given in Sec. V.

. Il. COHERENT STATE FLUX LINES
*FAX: Oxford (01865 275410. Electronic address:
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in which the operatoré andP take the form
- . There is some ambiguity in the interpretation of E@s.and
(a.pIQl¥)=(a+ihaVp)(a,pl¥), (38 (7), because the partial derivatives®andR are interrelated
- _ by Eq. (4) but the relationship to classical mechanics is best
(a,p|Ply)= =17V (a.p|4). (8 revealed by use of the identities
Alternative forms are also possible, because it is readily VR
demonstrated that V,S=p+Ai sz , (8a)
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but Egs.(3) have the convenience that they are independent

of \. It is assumed in what follows that the Hamiltonian
operator is of the form Taken together with the binomial expansion

n

~ 1 4 -
H=5— P2+ V(Q). ® (a+iVp)"=2, %qn_r(iw”)r ®
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Inserting the polar form(q,p|#)=R(q,p,t)el/MSar.H
for the wave function in Eq(2) and separating real and it follows for a potential of the general forM(Q)==,a,Q"
imaginary parts, we obtain the following two equations:  that Eqs.(6) and(7) go over to

as(a,p.t)  p?
JIR?(q,p,t)

P vy B Ran) |+ Vol - VaV(@)+ Z(a, p O IR, P} <O, ap
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R
Zy(q,pt)=——2-=——V,S. (139

Equations(10) and (11) are equivalent to the Schiimger the form ofZ(q,p,t) in Eg. (13). Hence the behavior of the

equation in the coherent state representation in(Bgpro-  coherent state flux lines is expected to be more complex than

vided thatR(q,p,t), S(d,p,t), and their derivatives are con- that of the classical trajectories, but the degree of nonlinear-

tinuous and single valued over the phase space. ity must reduce to that of classical mechanics in the classical
We concentrate on Edq11), which is a continuity equa- limit.

tion in phase space. The flux lines of this equation are the

solution (q(t),p(t)) of the differential equations IV. COHERENT STATE FLUX LINES IN THE DRIVEN
DOUBLE WELL POTENTIAL

. p
a= (14 In this section we show how the above definition of quan-
tum instability can be used to distinguish regular and chaotic
p= —V V() +2Z(q,p,t), (15) motion in quantum mechanics. We present numerical calcu-

lations for a particle in a double well potential under a mono-
with Z(q,p,t) given by Eq.(13). To obtain the trajectory chromatic external driving force, as defined by the Hamil-
(q(t),p(t)), the initial values(q(0),p(0)) must be supplied tonian
as input. An initial ensemble of points consistent with the
initial quantum probability density moving under the flux
equationg14) and(15) will reproduce the quantum probabil-
ity density for all times due to the existence of the phase
space continuity equatio(il), as in the de Broglie—-Bohm The classical dynamics for this Hamiltonian is known to be
quantum theory of motiofi20]. Note that the equations for regular or chaotic depending on the initial conditions and the
the flux lines of the coherent state representation of quantumame of the Coup"ng paramete{_ Previous quantum me-
mechanics are not unique. For example, using rela@  chanical studies have been made by Lin and Ballerj@2%
we can move th&, term, Eq.(13d), to theq term in Eq.(14)  who examined the evolution of initially minimum uncer-
and still obey the continuity equatiqdl). Test calculations tainty wave packets in the coherent state representation for
in the different gauges have shown that the following stabil-different wave packet centers and different values of the cou-
ity analysis is largely independent of the gauge. pling parameter. Expectation values and the rms uncertainty
It is clear from Egs(14) and (15) that the equations of were also discussed by Lin and Ballentine and compared
motion for the flux lines reduce to the classical Hamiltonianwith the classical solution. Implications for the enhancement
form if and reduction of tunneling for this system have also been
discussed by these authors and by Grossnedrat. [23].
Z(q,p,t)=0 (16) In the following we briefly describe our numerical calcu-
. __lations. Eigenstates were calculated by numerically diagonal-
for. al! g, p. andt sampled by the ensemb!e. The resultln.gi%mg a 100<100 matrix of the Hamiltonian in a harmonic
coincidence between coherent state flux lines and C|aSSIC%S illator basis set, for which the coherent state representa-
phase space trajectories does not, however, alone COIrespoft. '1as a known :cmalytical forntsee Appendix The pa-
to the classical limit. It is also necessary that Eif) above rameters of the Hamiltonian were chosen to make contact

correspond to the classical energy; in other words, . . , = —
= ) : with the results of Lin and Ballentinf22], m=1, A=0.5,
W(q,p,t)=0 for the appropriate ensemble. Analysis of theleO,ﬁ:l and initially minimum uncertainty wave packets

harmonic oscillator case in the Appendix shows that the clas- . . N :
sical limit is reached in this case becad@,p,t)=0 and with variance of (Ax)=0.08. The wave packet dynamics

; yvere calculated by expansion in the eigenstates basis as
secondly because the proper ensemble progressively peaks

around the classical orbit and where aldiéq,p,t) =0.

2

P
H=ﬁ+AQ4—BQ2+aQ coswot. 17)

(@pi)=3 @i vo)en| -1 €. a9
lll. INSTABILITY OF CLASSICAL n

AND QUANTUM FLUX LINES . . .
Q which holds for all times for the zero coupling parameter

In classical mechanics, instability is defined as the expoease,oc=0, and for times obeying= j r with 7the period of
nential divergence of initially neighboring trajectories in the driving force and an integer for the nonzero coupling
phase space. Lyapunov exponents and Kolmogorov entropiggrameter cases;#0. For this last case andE,, stand for
are used as measures of this exponential separf@ignWe  Floquet eigenstates and Floquet quasienergies, respectively.
propose by analogy to define instability in quantum theory aoherent state flux lines were obtained by solving E#j4)
the exponential divergence of initially neighboring coherentand(15) by a fourth order Runge-Kutta method. For nonzero
state flux lines, in order to recover the classical definition invalues of the coupling parameter we have, for numerical ef-
the classical limit when coherent state flux lines reduce to théiciency, considered the wave packet to be frozen between
phase space classical trajectories, that is, to the flux lines dgimes corresponding with the period of the driving force. Of
the corresponding Liouville equation. We note that the formcourse, the eigenfloquet expansion in Etf) guarantees a
of the equations of motion for quantum flux lines, E¢s4) correct representation of the wave packet for times equal to
and (15), are highly nonlinear, as can be clearly seen frommultiples of the period of the driving force.
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FIG. 1. Density plots of the coherent state
probability density of an oddeft) eigenstate and
q q an even(right) eigenstate close to the unstable
12 point of the undriven double well potentialpper

panne). Some of the corresponding flux lines are
TN, plotted in the lower pannel.

Before studying the results for wave packet dynamics, wenear the minimum of the right hand weélee Appendix
discuss the coherent state flux lines for the simpler case of This behavior is in clear contrast to that of cdbg with
two eigenstates close to the unstable point of the undrivefo,wy)=(6,5.39. In this case the wave packet is centered at
double well potential withc=0. In Fig. 1 we present the (q,p)=(0.1,4.5 and the initial value for the flux line is also
18th (odd) and 19th(even eigenstates in the coherent stateat that point,(q(0),p(0))=(0.1,4.5. The phase space dy-
representation with eigenenergie€g=—3.542 and namics of the flux lines and the time series behave in a com-
E,q=—0.327. The odd eigenstate is localized mainly on theplicated way. An interesting feature of this irregular case is
classical separatrix with the exception of the hyperbolicthe short term localization, which can already be seen in the
point, while the even eigenstate is concentrated mainly omarabolic barrier casg20]. In case(c), with the parameter
the hyperbolic point. This is a simple case of the “scar” values(o,w5)=(3,5.39, the dynamical behavior of the flux
phenomenor24] of quantum localization onto a classically lines is richer than the two preceding cases. The wave packet
unstable periodic orbit. These features can also be studied ia centered atd,p) =(—3.1,0.1 and the initial value for the
the corresponding coherent state flux lines in Fig. 1. Fofflux line is also at(q(0),p(0))=(—3.1,0.2. The flux line
most members of the ensemble, the flux lines for the evehas a rather regular behavior, although more complicated
state mainly describe oscillations around or close to the hythan in the integrable cage) up to timet =50, but thereafter
perbolic point while for the odd case they reproduce motionghe dynamics change drastically. The flux linmnelsfrom
close to the separatrix motion but avoid the hyperbolic pointthe left well to the right well and returns to the left well

Results for wave packet dynamics are presented for threagain. In the classical case the phase space region through
different parameter sets, which correspond (& regular
classical motion foro=0, (b) chaotic classical motion for
most initial conditions for(c,wy)=(6,5.39, and (c) regular
or chaotic motion depending on the initial conditions for
(0,00)=(3,5.35. Figure 2 shows the classical stroboscopic
maps for caseb) and(c), which will serve for comparison
with our quantum results.

In Fig. 3 we show the coherent state flux lines for wave
packets corresponding to cades (b), and(c). On the lefft,
the values of position and momentum of the flux lines are
displayed and on the right the time dependence of the vari-
ableq. For casga) with 0=0 the wave packet is centered at
(9,p)=(3.0,0.1 and the initial value for the flux line is atthe  FIG. 2. Stroboscopic maps for the driven double well potential
same phase space poiff(0),p(0))=(3.0,0.1. The behav- with potential parametergo,w)=(6,5.39 on the left plot and
ior can be seen to be very similar to that of the classicalo,wg)=(3,5.35 on the right plot. Thick circles indicate the location
solution and approach that of a harmonic oscillator motiorof initial wave packets.
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31 separated 1% in g andp.
'60 25 50 75 distinguishing feature of our approach is that the coherent
6 t state flux lines reduce to phase space classical mechanics in
the classical limit; hence our definition of quantum instabil-
3 ity goes over the standard one in classical mechanics. Nu-
merical calculations of coherent state flux lines in a driven
= 04 © double well potential have shown that the definition pro-
posed is of practical value in the study of regular and chaotic
] solutions in quantum mechanics. We have also shown that in
6 ] . . the general case where we have tunneling between regions of

0 25 50 75 100 different classical stability the local stability of the flux lines
change with time.

FIG. 3. Coherent state flux lines and time development of the ACKNOWLEDGMENTS
position value for wave packets initially located (@ a classically
regular region forr=0, (b) a classically chaotic region for potential G.G. acknowledges an EC Research Training Grant.
parametersa,wg)=(6,5.39, and(c) a classically regular region for
potential parameter@r,wg)=(3,5.35 corresponding to a classically APPENDIX

mixed phase space.
In this Appendix we give the solution of the flux lines in

which the flux lines istunnelingis chaotic(see Fig. 2and  the coherent state representation and the expression for the

we will see in the following that tunneling through a classi- energy for the stationary and nonstationary cases of the har-

cally chaotic region affects the stability of the coherent statemonic oscillator. Further discussion can be foundllif,17.

flux line. The coherent state representation of the eigenfunction for
In order to study the stability of the flux lines, we have a harmonic oscillator with Hamiltonian H=P2/2m

analyzed the behavior of flux lines initially very close to the + Imw?Q? is

regular, chaotic, and mixed ones already studied. Figure 4

presents the natural logarithm of the phase space distancE | € /2 € . . 1p
d(t) between the flux lines studied in Fig. 3 and flux lines (d:PIWn)=Npa| z—|  exp — z—+in tan | — mo q
initially separated by 10° in q andp. Case(a) corresponds

with the regular case in which the separation of flux lines is i pq i

clearly not exponential. Cagb) corresponds to the irregular Y 2 n Ent (19)

case and it can be clearly seen that the global separation is
exponential. Therefore, this case is unstable in the samaith e=(p%2m+ imw?q?) and the eigenenergf,=(n+
sense as the classical solution. In cé&sethe separation is 3)%Zw. The equations of motion for the flux lines and the
not exponential until timé=50 at which the separation be- energy, Eqs(14), (15), and(10) reduce in this case to

gins to be exponential with a slope very similar to that of
case(b). This time corresponds to thennelingof the flux

. P
line through a classically chaotic region. We have observed q= m’ (20
that this behavior is general for those cases in which the
classical dynamics is regular or chaotic depending on the p=—mw?q, (22)
initial conditions. The flux lines then display regular and
chaotic inserts in their evolution. E=E,. (22

To conclude, we have derived the quantum mechanical
coherent state flux equations and proposed a definition ofhe differential equation for the flux ling20) and (21) co-
instability analogous to that used in classical mechanics. Thmcide with the classical ones. However, the energy has the
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value of the eigenenergy irrespective of the initial conditions, 1= PoCOS wt) — MwXysin( wt). (25)

which has its classical relationship with position and mo-

mentum for the phase space loepE, whereas the distri-

bution [{q, p|¥)|? is maximum ate=n#% w. The energy differ-

ence between these two phase space loops faut. The

classical limit for all members of the ensemble is approache

at highn corresponding to a phase space distribution con-

centrated on the=n#w loop and for which theiw/2 con- ppe 1, fw

tribution to the energy is negligible. E=5m T3 me @)+ =, (26)
The coherent state representation of the coherent wave

packet is of the form

The equations for the coherent state flux lif&4) and (15)
for this case also reduce to the classical equations but the
gnergy of the particle in E10) reduces to

with x, and p; given by (24) and (25). For the center of the

_ Mo 1 wave packet the expression for the energy in E2§) re-
(9,ply)y=(27h) V2 eXF{ v (Ad—X) %~ Ahme duces to
i i pg i 2

X(p=p)?+ o {ap—px}+ 5 5 — 5 wt e 1 ho

2h h2 2 =— 4 - M3+ —
E 2m+2mth+ 5 (27

(23)
with which has a constant quantum contribution to the classical

energy offiw/2. The classical limit is obtained for high en-
ergy for which the constant contribution to energy is negli-

1 .
X;=XoCOY wt) + o posin(wt), (24 gible.
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