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Quantum instability of the flux lines in the coherent state representation

Gonzalo Garcı´a de Polavieja* and Mark S. Child†

Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3UB, United Kingdom
~Received 28 May 1996!

Instability as the exponential divergence of initially neighboring flux lines of the coherent state representa-
tion of quantum mechanics is shown to reduce in the classical limit to the standard definition of classical
instability. The equations for the coherent state flux lines are derived and the proposed definition for quantum
instability is shown to be of practical utility by numerical analysis of the double well potential under a
monochromatic external driving force. Regular and chaotic flux lines are found in accordance with the classical
trajectories.@S1063-651X~97!10702-4#

PACS number~s!: 05.45.1b, 03.65.2w
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I. INTRODUCTION

Conceptual and practical problems in quantum the
have often been related to finding the quantum counterpa
a classical phase space trajectory. The interpretation of q
tum theory, the tunneling times through a potential barr
and quantum chaos studies have largely been related to
problem. Decoherent histories@1#, Nelson stochastic path
@2#, and Bohmian trajectories@3# play an important role in
the interpretational problem of quantum theory. Feynm
paths and Bohmian and Wigner trajectories are some of
important proposals to the tunneling time problem@4#. The
quantum chaos problem, that is, finding the quantum co
terpart of classically chaotic motion, has been largely infl
enced by Feynman paths and semiclassical theories@5,6# and
have made important contributions in atomic and molecu
physics@6#.

The most important advances in the study of quant
counterparts of classical chaos have been related to fin
the quantum properties of classically chaotic systems~quan-
tum chaology studies@7#!. Concerning the problem of find
ing the quantum counterpart of classical chaos, the stan
answer is that it does not exist in relation to the Schro¨dinger
equation and that it may take place in the measurement
cess as the measurement apparatus is a classical objec
due to the collapse process@8#. Some have looked for new
definitions in classical mechanics that could be carried o
to quantum mechanics. In this respect information theory
algorithmic entropy have played a prominent role@9–11#.
Other proposals have retained the standard definition of c
sical instability as the exponential divergence of initia
neighboring trajectories in phase space and have sough
its quantum counterpart. Mendes@12# proposed deformation
outside Hilbert space and Kanno and Ishida@13# considered
the separation of Feynman paths. However, what is cle
needed is to treat the problem as a particular problem of
foundations of quantum theory. Along this line, Du¨rr, Gold-
stein, and Zanghi@14# have argued that quantum chaos aris
naturally in Bohmian mechanics. One of us@15# has found
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that Bohmian trajectories separate linearly or exponenti
for a typical nonintegrable system depending on the ini
conditions in accordance with the classical solution.

In this paper we use a causal dynamics recently propo
by one of us as a new interpretation of quantum the
@16,17# that offers a physical insight different from Bohmia
mechanics. For a given wave function, in Bohmian mech
ics there is one possible momentum for a given position
time t. In the dynamics we consider here all initial momen
are available with different probabilities and in the classi
limit the probability is peaked on the classically availab
momenta. The difference is more striking in the case of s
tionary states of bound systems for which Bohmian mech
ics describes the particle as standing still whereas in our c
the particle moves and with classical mechanics as a lim
Therefore, in our dynamics there can be chaotic motion
the stationary states as well as in nonstationary wave fu
tions. The causal dynamics we propose to consider are m
ematically described by the flux lines of the coherent st
representation of quantum mechanics, which we argue m
reduce to phase space classical trajectories in the clas
limit ~which are the flux lines of the Liouville equation!.
Thus by defining quantum instability as the exponen
separation of flux lines in the coherent state representatio
quantum mechanics, we recover the standard definition
classical instability in the classical limit. Equations for th
relevant flux lines in the coherent state representation
quantum mechanics are given in Sec. II, where it is arg
that the classical limit of the flux lines for the appropria
ensemble are the phase space classical trajectories. In Se
we propose to define quantum instability as the exponen
separation of flux lines in the coherent state representatio
quantum mechanics. This definition of quantum instabil
reduces to the standard definition of classical instability
the classical limit. In Sec. IV we show the utility of thi
definition of quantum instability by numerically obtainin
the coherent state flux lines for a double well potential un
a monochromatic external driving force. Regular and chao
flux lines are studied. Conclusions are given in Sec. V.

II. COHERENT STATE FLUX LINES

The coherent state representation, as defined by the tr
formation @18#
1451 © 1997 The American Physical Society
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^q,puc&5S l

2p D 1/4E dx^xuc&

3expF2
l

2\
~x2q!22

i

\
p~x2q!G ~1!

has been shown by Torres-Vega and Frederik@19# to satisfy
the Schro¨dinger equation

i\
]

]t
^q,puc&5^q,puĤ~Q̂,P̂!uc& ~2!

in which the operatorsQ̂ and P̂ take the form

^q,puQ̂uc&5~q1 i\¹p!^q,puc&, ~3a!

^q,puP̂uc&52 i\¹q^q,puc&. ~3b!

Alternative forms are also possible, because it is rea
demonstrated that

¹q^q,p,uc&5S il¹p1
p

\ D ^q,puc&, ~4!

but Eqs.~3! have the convenience that they are independ
of l. It is assumed in what follows that the Hamiltonia
operator is of the form

Ĥ5
1

2m
P̂21V~Q̂!. ~5!

Inserting the polar form̂ q,puc&5R(q,p,t)e( i /\)S(q,p,t)

for the wave function in Eq.~2! and separating real an
imaginary parts, we obtain the following two equations:
ly

nt

2
]S

]t
5

~¹qS!2

2m
2

\2

2m

¹q
2R

R

1
1

R
Re@e2~1/\!SV~q1 i\¹p!Re

~ i /\!S#, ~6!

]R2

]t
1¹qFR2S ¹qS

m D G
2
2

\
Im@Re2~1/\!SV~q1 i\¹p!Re

~ i /\!S#50. ~7!

There is some ambiguity in the interpretation of Eqs.~6! and
~7!, because the partial derivatives ofSandR are interrelated
by Eq. ~4! but the relationship to classical mechanics is b
revealed by use of the identities

¹qS5p1l\
¹pR

R
, ~8a!

¹pS52
\

l

¹qR

R
. ~8b!

Taken together with the binomial expansion

~q1 i\¹p!
n5(

r50

n
n!

r ! ~n2r !!
qn2r~ i\¹p!

r ~9!

it follows for a potential of the general formV(Q)5(nanQ
n

that Eqs.~6! and ~7! go over to
2
]S~q,p,t !

]t
5

p2

2m
1V~q!1W~q,p,t !, ~10!

]R2~q,p,t !

]t
1¹qF pm R2~q,p,t !G1¹p$@2¹qV~q!1Z~q,p,t !#R2~q,p,t !%50, ~11!

with

W~q,p,t !5W1~q,p,t !1W2~q,p,t !, ~12a!

W1~q,p,t !52
\2

2m

¹q
2R

R
1

l\

m
p

¹pR

R
1

l2\2

4m

~¹pR!2

R2 , ~12b!

W2~q,p,t !5(
n

an
R

ReFe2~ i /\!SS (
r51

n
n!

r ! ~n2r !!
qn2r~ i\¹p!

r DRe~ i /\!SG ~12c!

and

Z~q,p,t !5Z1~q,p,t !1Z2~q,p,t !, ~13a!

Z1~q,p,t !52
2

\R2 E dp(
n

anImFRe2~ i /\!SS (
r52

n
n!

r ! ~n2r !!
qn2r~ i\¹p!

r DRe~ i /\!SG , ~13b!
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Z2~q,p,t !5
l\

m

¹qR

R
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l2

m
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Equations~10! and ~11! are equivalent to the Schro¨dinger
equation in the coherent state representation in Eq.~2! pro-
vided thatR(q,p,t), S(q,p,t), and their derivatives are con
tinuous and single valued over the phase space.

We concentrate on Eq.~11!, which is a continuity equa-
tion in phase space. The flux lines of this equation are
solution „q(t),p(t)… of the differential equations

q̇5
p

m
, ~14!

ṗ52¹qV~q!1Z~q,p,t !, ~15!

with Z(q,p,t) given by Eq.~13!. To obtain the trajectory
„q(t),p(t)…, the initial values„q(0),p(0)… must be supplied
as input. An initial ensemble of points consistent with t
initial quantum probability density moving under the flu
equations~14! and~15! will reproduce the quantum probabi
ity density for all times due to the existence of the pha
space continuity equation~11!, as in the de Broglie–Bohm
quantum theory of motion@20#. Note that the equations fo
the flux lines of the coherent state representation of quan
mechanics are not unique. For example, using relation~8a!
we can move theZ2 term, Eq.~13d!, to theq̇ term in Eq.~14!
and still obey the continuity equation~11!. Test calculations
in the different gauges have shown that the following sta
ity analysis is largely independent of the gauge.

It is clear from Eqs.~14! and ~15! that the equations o
motion for the flux lines reduce to the classical Hamiltoni
form if

Z~q,p,t !50 ~16!

for all q, p, and t sampled by the ensemble. The resulti
coincidence between coherent state flux lines and clas
phase space trajectories does not, however, alone corres
to the classical limit. It is also necessary that Eq.~10! above
correspond to the classical energy; in other wor
W(q,p,t)50 for the appropriate ensemble. Analysis of t
harmonic oscillator case in the Appendix shows that the c
sical limit is reached in this case becauseZ(q,p,t)50 and
secondly because the proper ensemble progressively p
around the classical orbit and where aloneW(q,p,t)50.

III. INSTABILITY OF CLASSICAL
AND QUANTUM FLUX LINES

In classical mechanics, instability is defined as the ex
nential divergence of initially neighboring trajectories
phase space. Lyapunov exponents and Kolmogorov entro
are used as measures of this exponential separation@21#. We
propose by analogy to define instability in quantum theory
the exponential divergence of initially neighboring cohere
state flux lines, in order to recover the classical definition
the classical limit when coherent state flux lines reduce to
phase space classical trajectories, that is, to the flux line
the corresponding Liouville equation. We note that the fo
of the equations of motion for quantum flux lines, Eqs.~14!
and ~15!, are highly nonlinear, as can be clearly seen fr
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the form ofZ(q,p,t) in Eq. ~13!. Hence the behavior of the
coherent state flux lines is expected to be more complex t
that of the classical trajectories, but the degree of nonline
ity must reduce to that of classical mechanics in the class
limit.

IV. COHERENT STATE FLUX LINES IN THE DRIVEN
DOUBLE WELL POTENTIAL

In this section we show how the above definition of qua
tum instability can be used to distinguish regular and cha
motion in quantum mechanics. We present numerical ca
lations for a particle in a double well potential under a mon
chromatic external driving force, as defined by the Ham
tonian

H5
P2

2m
1AQ42BQ21sQ cosv0t. ~17!

The classical dynamics for this Hamiltonian is known to
regular or chaotic depending on the initial conditions and
value of the coupling parameters. Previous quantum me
chanical studies have been made by Lin and Ballentine@22#
who examined the evolution of initially minimum unce
tainty wave packets in the coherent state representation
different wave packet centers and different values of the c
pling parameter. Expectation values and the rms uncerta
were also discussed by Lin and Ballentine and compa
with the classical solution. Implications for the enhancem
and reduction of tunneling for this system have also be
discussed by these authors and by Grossmannet al. @23#.

In the following we briefly describe our numerical calc
lations. Eigenstates were calculated by numerically diago
izing a 1003100 matrix of the Hamiltonian in a harmoni
oscillator basis set, for which the coherent state represe
tion has a known analytical form~see Appendix!. The pa-
rameters of the Hamiltonian were chosen to make con
with the results of Lin and Ballentine@22#, m51, A50.5,
B510,\51 and initially minimum uncertainty wave packe
with variance of (D x̂)50.08. The wave packet dynamic
were calculated by expansion in the eigenstates basis as

^q,puC&5(
n

^q,pun&^nuC~0!&expH 2
i

\
EntJ , ~18!

which holds for all times for the zero coupling parame
case,s50, and for times obeyingt5 j t with t the period of
the driving force andj an integer for the nonzero couplin
parameter cases,sÞ0. For this last casen andEn stand for
Floquet eigenstates and Floquet quasienergies, respecti
Coherent state flux lines were obtained by solving Eqs.~14!
and~15! by a fourth order Runge-Kutta method. For nonze
values of the coupling parameter we have, for numerical
ficiency, considered the wave packet to be frozen betw
times corresponding with the period of the driving force.
course, the eigenfloquet expansion in Eq.~18! guarantees a
correct representation of the wave packet for times equa
multiples of the period of the driving force.
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FIG. 1. Density plots of the coherent sta
probability density of an odd~left! eigenstate and
an even~right! eigenstate close to the unstab
point of the undriven double well potential~upper
pannel!. Some of the corresponding flux lines a
plotted in the lower pannel.
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Before studying the results for wave packet dynamics,
discuss the coherent state flux lines for the simpler cas
two eigenstates close to the unstable point of the undri
double well potential withs50. In Fig. 1 we present the
18th ~odd! and 19th~even! eigenstates in the coherent sta
representation with eigenenergiesE18523.542 and
E19520.327. The odd eigenstate is localized mainly on
classical separatrix with the exception of the hyperbo
point, while the even eigenstate is concentrated mainly
the hyperbolic point. This is a simple case of the ‘‘sca
phenomenon@24# of quantum localization onto a classical
unstable periodic orbit. These features can also be studie
the corresponding coherent state flux lines in Fig. 1.
most members of the ensemble, the flux lines for the e
state mainly describe oscillations around or close to the
perbolic point while for the odd case they reproduce motio
close to the separatrix motion but avoid the hyperbolic po

Results for wave packet dynamics are presented for th
different parameter sets, which correspond to~a! regular
classical motion fors50, ~b! chaotic classical motion fo
most initial conditions for~s,v0!5~6,5.35!, and ~c! regular
or chaotic motion depending on the initial conditions f
~s,v0!5~3,5.35!. Figure 2 shows the classical stroboscop
maps for cases~b! and ~c!, which will serve for comparison
with our quantum results.

In Fig. 3 we show the coherent state flux lines for wa
packets corresponding to cases~a!, ~b!, and~c!. On the left,
the values of position and momentum of the flux lines
displayed and on the right the time dependence of the v
ableq. For case~a! with s50 the wave packet is centered
(q̄,p̄)5~3.0,0.1! and the initial value for the flux line is at th
same phase space point,„q(0),p(0)…5~3.0,0.1!. The behav-
ior can be seen to be very similar to that of the class
solution and approach that of a harmonic oscillator mot
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near the minimum of the right hand well~see Appendix!.
This behavior is in clear contrast to that of case~b!, with

~s,v0!5~6,5.35!. In this case the wave packet is centered
(q̄,p̄)5~0.1,4.5! and the initial value for the flux line is also
at that point,„q(0),p(0)…5~0.1,4.5!. The phase space dy
namics of the flux lines and the time series behave in a c
plicated way. An interesting feature of this irregular case
the short term localization, which can already be seen in
parabolic barrier case@20#. In case~c!, with the parameter
values~s,v0!5~3,5.35!, the dynamical behavior of the flux
lines is richer than the two preceding cases. The wave pa
is centered at (q̄,p̄)5~23.1,0.1! and the initial value for the
flux line is also at„q(0),p(0)…5~23.1,0.1!. The flux line
has a rather regular behavior, although more complica
than in the integrable case~a! up to timet550, but thereafter
the dynamics change drastically. The flux linetunnelsfrom
the left well to the right well and returns to the left we
again. In the classical case the phase space region thr

FIG. 2. Stroboscopic maps for the driven double well poten
with potential parameters~s,v0!5~6,5.35! on the left plot and
~s,v0!5~3,5.35! on the right plot. Thick circles indicate the locatio
of initial wave packets.
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which the flux lines istunneling is chaotic~see Fig. 2! and
we will see in the following that tunneling through a class
cally chaotic region affects the stability of the coherent sta
flux line.

In order to study the stability of the flux lines, we hav
analyzed the behavior of flux lines initially very close to th
regular, chaotic, and mixed ones already studied. Figure
presents the natural logarithm of the phase space dista
d(t) between the flux lines studied in Fig. 3 and flux line
initially separated by 1025 in q andp. Case~a! corresponds
with the regular case in which the separation of flux lines
clearly not exponential. Case~b! corresponds to the irregular
case and it can be clearly seen that the global separatio
exponential. Therefore, this case is unstable in the sa
sense as the classical solution. In case~c! the separation is
not exponential until timet550 at which the separation be
gins to be exponential with a slope very similar to that o
case~b!. This time corresponds to thetunnelingof the flux
line through a classically chaotic region. We have observ
that this behavior is general for those cases in which t
classical dynamics is regular or chaotic depending on t
initial conditions. The flux lines then display regular an
chaotic inserts in their evolution.

To conclude, we have derived the quantum mechani
coherent state flux equations and proposed a definition
instability analogous to that used in classical mechanics. T

FIG. 3. Coherent state flux lines and time development of t
position value for wave packets initially located in~a! a classically
regular region fors50, ~b! a classically chaotic region for potentia
parameters~s,v0!5~6,5.35!, and~c! a classically regular region for
potential parameters~s,v0!5~3,5.35! corresponding to a classically
mixed phase space.
e

4
ce

s

is
e
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d
e
e
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e

distinguishing feature of our approach is that the coher
state flux lines reduce to phase space classical mechani
the classical limit; hence our definition of quantum instab
ity goes over the standard one in classical mechanics.
merical calculations of coherent state flux lines in a driv
double well potential have shown that the definition pr
posed is of practical value in the study of regular and cha
solutions in quantum mechanics. We have also shown tha
the general case where we have tunneling between region
different classical stability the local stability of the flux line
change with time.
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APPENDIX

In this Appendix we give the solution of the flux lines i
the coherent state representation and the expression fo
energy for the stationary and nonstationary cases of the
monic oscillator. Further discussion can be found in@16,17#.

The coherent state representation of the eigenfunction
a harmonic oscillator with HamiltonianH5P2/2m
1 1

2mv2Q2 is

^q,puCn&5Nn8S e

\v D n/2 expS 2
e

2\v
1 in tan21S 2

1

mv

p

qD
1

i

\

pq

2
2

i

\
Ent D ~19!

with e5(p2/2m1 1
2mv2q2) and the eigenenergyEn5(n1

1
2 )\v. The equations of motion for the flux lines and th
energy, Eqs.~14!, ~15!, and~10! reduce in this case to

q̇5
p

m
, ~20!

ṗ52mv2q, ~21!

E5En . ~22!

The differential equation for the flux lines~20! and ~21! co-
incide with the classical ones. However, the energy has

FIG. 4. Natural logarithm of the separation in time of the flu
lines in cases~a!, ~b!, and ~c! of Fig. 3 with flux lines initially
separated 1025 in q andp.
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value of the eigenenergy irrespective of the initial conditio
which has its classical relationship with position and m
mentum for the phase space loope5En whereas the distri-
bution u^q,puC&u2 is maximum ate5n\v. The energy differ-
ence between these two phase space loops is of\v/2. The
classical limit for all members of the ensemble is approac
at high n corresponding to a phase space distribution c
centrated on thee5n\v loop and for which the\v/2 con-
tribution to the energy is negligible.

The coherent state representation of the coherent w
packet is of the form

^q,puc&5~2p\!21/2 expS 2
mv

4\
~q2xt!

22
1

4\mv

3~p2pt!
21

i

2\
$qpt2pxt%1

i

\

pq

2
2

i

2
vt D

~23!

with

xt5x0cos~vt !1
1

mv
p0sin~vt !, ~24!
n

-

cs

li-

-

,
-

d
-

ve

pt5p0cos~vt !2mvx0sin~vt !. ~25!

The equations for the coherent state flux lines~14! and ~15!
for this case also reduce to the classical equations but
energy of the particle in Eq.~10! reduces to

E5
ppt
2m

1
1

2
mv2~qxt!1

\v

2
, ~26!

with xt andpt given by ~24! and ~25!. For the center of the
wave packet the expression for the energy in Eq.~26! re-
duces to

E5
pt
2

2m
1
1

2
mv2xt

21
\v

2
, ~27!

which has a constant quantum contribution to the class
energy of\v/2. The classical limit is obtained for high en
ergy for which the constant contribution to energy is neg
gible.
m
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